Small Business Innovation Research/Small Business Tech Transfer

Configurable, Multi-Beam, Doppler Ladar Based Precision Landing Sensor, Phase I

Completed Technology Project (2015 - 2016)

Project Introduction

Fibertek proposes a configurable, multi-beam, 1.5 um Doppler Lidar sensor, enabled by high-speed non-mechanical beam steering (NMBS). NMBS uses state-of-the-art, high-speed liquid-crystal based components, to provide wideangle (up to +/- 45 degree), large-aperture, optical beam steering, at speeds of up to 10 kHz. Furthermore, this is integrated into a very compact optical transmit/receive terminal, designed for coherent lidar operation. The proposed Doppler Lidar sensor is estimated to be 4X lower SWaP, and have 3X-5X improved range performance over the current design for entry, descent, landing (EDL) sensors under development at NASA. In addition, the configurable, high-speed, beam-scan pattern provides enhanced functionality for velocity/range/attitude estimate, and even for terrain mapping. The Doppler Lidar landing sensor model will be developed by our Research Institution partner, leveraging their related work on 3D-imaging ladar. The proposed effort targets a space-qualifiable roadmap, as we will leverage ongoing inter-disciplinary engineering development and qualification at Fibertek, for high-reliability, high-power, fiber laser transmitter and transmit/receive optical terminal for deep-space mission.

Primary U.S. Work Locations and Key Partners

Configurable, Multi-Beam, Doppler Ladar Based Precision Landing Sensor, Phase I Briefing Chart Image

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Images	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Configurable, Multi-Beam, Doppler Ladar Based Precision Landing Sensor, Phase I

Completed Technology Project (2015 - 2016)

Organizations Performing Work	Role	Туре	Location
Fibertek, Inc.	Lead Organization	Industry	Herndon, Virginia
Langley Research Center(LaRC)	Supporting Organization	NASA Center	Hampton, Virginia
Utah State University(USU)	Supporting Organization	Academia Alaska Native and Native Hawaiian Serving Institutions (ANNH)	Logan, Utah

Primary U.S. Work Locations		
Utah	Virginia	

Project Transitions

June 2015: Project Start

June 2016: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/138897)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Fibertek, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Shantanu Gupta

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Configurable, Multi-Beam, Doppler Ladar Based Precision Landing Sensor, Phase I

Completed Technology Project (2015 - 2016)

Images

Briefing Chart Image

Configurable, Multi-Beam, Doppler Ladar Based Precision Landing Sensor, Phase I Briefing Chart Image (https://techport.nasa.gov/image/135041)

Final Summary Chart Image Configurable, Multi-Beam, Doppler Ladar Based Precision Landing Sensor, Phase I Project Image (https://techport.nasa.gov/imag e/128967)

Technology Areas

Primary:

Target Destinations

Earth, The Moon, Others Inside the Solar System, Outside the Solar System, The Sun, Mars

